
J
H
E
P
1
0
(
2
0
0
7
)
0
1
9

Published by Institute of Physics Publishing for SISSA

Received: July 1, 2007

Accepted: September 25, 2007

Published: October 3, 2007

Flavoured large N gauge theory in an external

magnetic field

Veselin G. Filev and Clifford V. Johnson

Department of Physics and Astronomy, University of Southern California,

Los Angeles, CA 90089-0484, U.S.A.

E-mail: filev@usc.edu, johnson1@usc.edu

Radoslav C. Rashkov∗ and K. Sankaran Viswanathan

Department of Physics Simon Fraser University and IRMACS Centre,

Burnaby, BC, V5A 1S6, Canada

E-mail: kviswana@sfu.ca, rash@phys.uni-sofia.bg

Abstract: We consider a D7-brane probe of AdS5 × S5 in the presence of pure gauge B-

field. In the dual gauge theory, the B-field couples to the fundamental matter introduced

by the D7-brane and acts as an external magnetic field. The B-field supports a 6-form

Ramond-Ramond potential on the D7-branes world volume that breaks the supersymmetry

and enables the dual gauge theory to develop a non-zero fermionic condensate. We explore

the dependence of the fermionic condensate on the bare quark mass mq and show that

at zero bare quark mass a chiral symmetry is spontaneously broken. A study of the

meson spectrum reveals a coupling between the vector and scalar modes, and in the limit

of weak magnetic field we observe Zeeman splitting of the states. We also observe the

characteristic
√

mq dependence of the ground state corresponding to the Goldstone boson

of spontaneously broken chiral symmetry.

Keywords: AdS-CFT Correspondence, D-branes.

∗On leave from Dept of Physics, Sofia University, Bulgaria.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep102007019/jhep102007019.pdf

mailto:filev@usc.edu
mailto:johnson1@usc.edu
mailto:kviswana@sfu.ca
mailto:rash@phys.uni-sofia.bg
http://jhep.sissa.it/stdsearch


J
H
E
P
1
0
(
2
0
0
7
)
0
1
9

Contents

1. Introduction 1

2. Fundamental matter in an external magnetic field 2

2.1 Basic configuration 2

2.2 Properties of the solution 5

2.2.1 Weak magnetic field 6

2.2.2 Numerical results 6

3. Meson spectrum 8

3.1 General properties 8

3.2 Fluctuations along Φ 13

3.2.1 Weak magnetic field 13

3.2.2 Strong magnetic field 16

1. Introduction

In recent years, progress has been made in the study of gauge theory with matter in the fun-

damental representation in the context of gauge/string dualities generalizing the AdS/CFT

correspondence. One way to achieve this is by introducing D7-branes in the probe limit [2]

that amounts to the condition Nf ≪ Nc. The fundamental strings stretched between

the stack of Nc D3-branes and the Nf flavor D7-branes give rise to N=2 hypermultiplet.

The separation of the D3- and D7-branes in the transverse directions corresponds to the

mass of the hypermultiplet, the classical shape of the D7-brane encodes the value of the

fermionic condensate, and its fluctuations describe the light meson spectrum of the the-

ory [3]. This technique for introducing fundamental matter has been widely employed

in different backgrounds. Of particular interest is the study of non supersymmetric back-

grounds and phenomena such as spontaneous chiral symmetry breaking. These phenomena

were first studied in this context in ref. [4], using analytical and numerical techniques. In

several works this approach was further developed, and has proven itself a powerful tool for

the exploration of gauge theories, in particular, for the description of their thermodynamic

properties or for the building of phenomenological models relevant to QCD [5]–[40].

In this paper we will be interested in introducing fundamental matter into the gauge

theory in the presence of an external electromagnetic field that couples to the fundamental

fermions. The supersymmetry will be explicitly broken by the external field, and we will

observe spontaneous symmetry breaking, and non-trivial mixing in the spectrum of mesons.

There have been non-perturbative studies of fermionic models in background magnetic

field before, and there is a large literature (see e.g., the reviews of refs. [43, 44], and the
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discussion of ref. [45] and references therein). Generally, those works use quite different

methods to examine aspects of the physics — some primary non-perturbative tools are the

Dyson-Schwinger equations in various truncations). Our results are consistent with the

general expectations from those works, which is that strong magnetic fields are generically

expected to be a catalyst for spontaneous chiral symmetry breaking in a wide class of

models (see e.g., refs. [46, 45, 43] for a discussion of the conjectured universality of this

result).

2. Fundamental matter in an external magnetic field

2.1 Basic configuration

Let us consider the AdS5 ×S5 geometry describing the near-horizon physics of a collection

of Nc extremal D3-branes.

ds2 =
u2

R2
(−dx2

0 + dx2
1 + dx2

2 + dx2
3) + R2 du2

u2
+ R2dΩ2

5 , (2.1)

gsC(4) =
u4

R4
dx0 ∧ dx1 ∧ dx2 ∧ dx3 ,

eΦ = gs ,

R4 = 4πgsNcα
′2 ,

Where dΩ2
5 is the unit metric on a round S5. In order to introduce fundamental matter we

first rewrite the metric in the following form, with dΩ2
3 the metric on a unit S3:

ds2 =
ρ2 + L2

R2
[−dx2

0 + dx2
1 + dx2

2 + dx2
3] +

R2

ρ2 + L2
[dρ2 + ρ2dΩ2

3 + dL2 + L2dφ2],

dΩ2
3 = dψ2 + cos2 ψdβ2 + sin2 ψdγ2, (2.2)

where ρ, ψ, β, γ and L, φ are polar coordinates in the transverse R
4 and R

2 respectively.

Note that: u2 = ρ2 + L2. We use x0, x1, x2, x3, ρ, ψ, β, γ to parametrise the world volume

of the D7-brane and consider the following ansatz [3] for its embedding:

φ ≡ const, L ≡ L(ρ),

leading to the following form of the induced metric on its worldvolume:

ds̃ =
ρ2 + L(ρ)2

R2
[−dx2

0 + dx2
1 + dx2

2 + dx2
3] +

R2

ρ2 + L(ρ)2
[(1 + L′(ρ)2)dρ2 + ρ2dΩ2

3] . (2.3)

Now let us consider the general DBI action:

SDBI = −µ7

∫

M8

d8ξe−Φ[−det(Gab + Bab + 2πα′Fab)]
1/2 . (2.4)

Here µ7 = [(2π)7α′4]−1 is the D7-brane tension, Gab and Bab are the induced metric

and B-field on the D7-brane’s world volume, while Fab is its world-volume gauge field. A
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simple way to introduce magnetic field would be to consider a pure gauge B-field along

parts of the D3-branes’ world volume, e.g.:

B(2) = Hdx2 ∧ dx3 . (2.5)

Since Bab can be mixed with the gauge field strength Fab, this is equivalent to a magnetic

field on the world-volume. Recently a similar approach was used to study drag force in

SYM plasma [36]. Note that since the B-field is pure gauge, dB = 0, the corresponding

background is still a solution to the supergravity equations of motion. On the other hand,

the gauge field Fab comes at next order in the α′ expansion compared to the metric and

the B-field components. Therefore to study the classical embedding of the D-brane one

can study only the (Gab + Bab) part of the DBI-action. However, because of the presence

of the B-field, there will be terms ot first order in α′ in the full action linear in the gauge

field Fab. Hence integrating out Fab will result in a constraint for the classical embedding

of the D7-brane.

Since for our configuration, we have that:

B(2) ∧ B(2) = 0 , B(2) ∧ C(4) = 0 ,

and at first order in α′ the only contribution to the Wess-Zummino is

2πα′µ7

∫
F(2) ∧ C(6) . (2.6)

By using the following expansion in the DBI action:

[−det(Eab + 2πα′Fab)]
1/2 =

√
E + πα′

√
EEbaFab + O(F 2); E = −detEab; , (2.7)

where we have introduced Eab = Gab+Bab as a notation for the generalized induced metric,

we obtain the following action to first order in α′:

SF = πα′µ7

gs

∫

M8

d8ξ
√

EE[ab]F[ab] + 2πα′µ7

∫
F(2) ∧ C(6) . (2.8)

Note that in equation (2.8) we didn’t take the gs → 0 limit, which would suppress the

Wess-Zummino term, provided that the C(6) potential had no explicit gs dependence. The

resulting equation of motion does not contain Aa and sets the following constraint for the

C(6) potential induced by the gauge B-field.

gs

6!
ǫabµ̃1...µ̃6∂aCµ̃1...µ̃6 = −∂a(

√
EE[ba]); a, b, µ̃1, . . . µ̃6 ∈ M8; . (2.9)

Note that C(6) has a dynamical term proportional to 1/κ2
0 in the supergravity action, and

that the D7-brane action is proportional to µ7 = 2π/κ2
0. Therefore they are at the same

order in α′ and gs [42]. We must solve for C(6) using the action:

SC(6)
= µ7

∫
B(2) ∧ C(6) −

1

4k2
0

∫
d10x

√
−G|dC(6)|2 . (2.10)
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The solution obtained from equation (2.10) has to satisfy the constraint given in equa-

tion (2.9). Our next goal will be to find a consistent ansatz for C(6). To do this let us

consider the classical contribution to the DBI action:

SNS = −µ7

gs

∫
d8ξ

√
E . (2.11)

From equation (2.11) one can solve for the classical embedding of the D7-brane, which

amounts to second order differential equation for L(ρ) with some appropriate solution

L0(ρ). After substituting L0(ρ) in (2.11) we can extract the form of the C(6) potential

induced by the B-field. However one still has to satisfy the constraint (2.9). It can be

verified that with the choice (2.5) for the B-field and the ansatz of equation (2.3) for the

induced metric, the right-hand side of equation (2.9) is zero. Then equation (2.9) and the

effective action (2.10) boil down to finding a consistent ansatz for C(6) satisfying:

∂µ(
√
−GdCµ01ρψαβ

6 ) = −µ7κ
2
0

π
Hδ(L − L0(ρ)) , (2.12)

or ∂µ(
√
−GdCµ01Lψαβ

6 ) = −L′
0(ρ)

µ7κ
2
0

π
Hδ(L − L0(ρ)) , (2.13)

ǫabµ̃1...µ̃6∂aCµ̃1...µ̃6 = 0; a, b, µ̃1, . . . µ̃6 ∈ M8; . (2.14)

One can verify that the choice:

C(6)01ρψαβ
=

1

7
f(ρ, L, ψ), dC(6)L01ρψαβ

= ∂Lf , (2.15)

is a consistent ansatz and the solution for the C(6) field strength can be found to be:

dC(6)L01ρψαβ
=

µ7κ
2
0

π
H

ρ3R4

L(ρ2 + L2)2
Θ(L − L0(ρ)) sin ψ cos ψ . (2.16)

It is this potential which breaks the supersymmety. Note that any solution for the

C(6) potential satisfying equations (2.12) and (2.13) would not depend on gs, therefore in

the gs → 0 limit we could suppress the Wess-Zumino term in equation (2.8) and relax the

additional constraint (2.14). It is important to note that there is no contradiction between

the fact that the B-field that we have chosen does not break the supersymmetry of the

AdS5 ×S5 supergravity background, on the one hand, and the fact that the physics of the

D7-brane probing that background does have supersymmetry broken by the B-field, on the

other. This is because the physics of the probe does not back-react on the geometry.

In what follows, we will study the physics of the D7-branes and the resulting dual gauge

theory physics. Among the solutions for the D7-brane embedding, there will be a class

with non-trivial profile having zero asymptotic separation between the D3- and D7-branes.

This corresponds to a non-zero fermionic condensate at zero bare quark mass. Therefore

the non-zero background magnetic field will spontaneously break the chiral symmetry.

Geometrically this corresponds to breaking of the SO(2) rotational symmetry in the (L, φ)-

plane [3].
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2.2 Properties of the solution

We now proceed with the exploration of the properties of the classical D7-brane embed-

ding. If we consider the action (2.11) at leading order in α′, we get the following effective

lagrangian:

L = −µ7

gs
ρ3 sinψ cos ψ

√
1 + L′2

√
1 +

R4H2

(ρ2 + L2)2
. (2.17)

The equation of motion for the profile L0(ρ) of the D7-brane is given by:

∂ρ

(
ρ3 L′

0√
1 + L′2

0

√
1 +

R4H2

(ρ2 + L2
0)

2

)
+

√
1 + L′2

0√
1 + R4h2

(ρ2+L2
0)2

2ρ3L0R
4H2

(ρ2 + L2
0)

3
= 0 . (2.18)

As expected for large (L2
0 +ρ2) → ∞ or H → 0, we get the equation for the pure AdS5×S5

background [2]:

∂ρ

(
ρ3 L′

0√
1 + L′2

0

)
= 0 .

Therefore the solutions to equation (2.18) have the following behavior at infinity:

L0(ρ) = m +
c

ρ2
+ . . . . (2.19)

where the parameters m (the asymptotic separation of the D7- and D3- branes) and c (the

degree of bending of the D7-brane) are related to the bare quark mass mq = m/2πα′ and

the fermionic condensate 〈ψ̄ψ〉 ∝ −c respectively [5]. As we shall see below, the presence

of the external magnetic field and its effect on the dual SYM provide a non vanishing value

for the fermionic condensate, furthermore the theory exhibits chiral symmetry breaking.

Now notice that H enters in (2.17) only through the combination H2R4. The other

natural scale is the asymptotic separation m. It turns out that different physical config-

urations can be studied in terms of the ratio m̃2 = m2/(HR2): Once the m̃ dependence

of our solutions are known, the m and H dependence follows. Indeed let us introduce

dimensionless variables via:

ρ = R
√

Hρ̃ , L0 = R
√

HL̃ , L′
0(ρ) = L̃′(ρ̃) . (2.20)

The equation of motion (2.18) then takes the form:

∂ρ̃

(
ρ̃3 L̃′

√
1 + L̃′2

√
1 +

1

(ρ̃2 + L̃2)2

)
+

√
1 + L̃′2

√
1 + 1

(ρ̃2+L̃2)2

2ρ̃3L̃

(ρ̃2 + L̃2)3
= 0 (2.21)

The solutions for L̃(ρ̃) can be expanded again to:

L̃(ρ̃) = m̃ +
c̃

ρ̃2
+ . . . , (2.22)

and using the transformation (2.20) we can get:

c = c̃R3H3/2 . (2.23)

It is instructive to study first the properties of (2.21) for m̃ ≫ 1, which corresponds to

weak magnetic field H ≪ m2/R2, or equivalently large quark mass m ≫ R
√

H.
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2.2.1 Weak magnetic field

In order to analyze the case of weak magnetic field let us expand L̃(ρ̃) = m̃ + η(ρ̃) and

linearize equation (2.21) while leaving only the leading terms in (ρ̃2 + m̃2)−1. The result

is:

∂ρ̃

(
ρ̃3η′

)
+

2ρ̃3m̃

(ρ̃2 + m̃2)3
= 0 , (2.24)

which has the general solution:

η(ρ̃) =
C1

ρ̃2
− m̃

4ρ̃2(m̃2 + ρ̃2)
+ C2 . (2.25)

From the definition of η(ρ̃) and equation (2.22) we can see that C1 = c̃ and since η|ρ̃→∞ = 0

we have C2 = 0. Now if we consider m̃ large enough, equation (2.25) should be valid for

all ρ̃. It turns out that if we require that our solution be finite as ρ̃ → 0 we can determine

the large m̃ behavior of c̃. Indeed the second term in (2.25) has the expansion:

− m̃

4ρ̃2(m̃2 + ρ̃2)
= − 1

4m̃

1

ρ̃2
+

1

4m̃3
+ O(ρ̃2) . (2.26)

Therefore we deduce that:

C1 = c̃ =
1

4m̃
, (2.27)

and finally, we get for the profile of the D7-brane for m̃ ≫ 1:

L̃(ρ̃) = m̃ +
1

4m̃

1

ρ̃2
− m̃

4ρ̃2(m̃2 + ρ̃2)
. (2.28)

If we go back to dimensionful parameters we can see, using equations (2.23) and (2.27)

that for weak magnetic field H the theory has developed a fermionic condensate:

〈ψ̄ψ〉 ∝ −c = −R4

4m
H2 . (2.29)

However this formula is valid only for sufficiently large m and we cannot make any

prediction for the value of the fermionic condensate at zero quark mass. To go further, the

involved form of equation (2.21) suggests the use of numerical techniques.

2.2.2 Numerical results

In this subsection we solve numerically equation (2.21) for the embedding of the D7-brane,

using Mathematica. It is convenient to use initial conditions in the IR as has been recently

discussed in the literature [6, 7].We use the boundary condition L̃′(ρ̃)|ρ̃=0 = 0. We used

shooting techniques to generate the embedding of the D7 for a wide range of m̃. Having

done so we expanded numerically the solutions for L̃(ρ̃) as in equation (2.22) and gener-

ated the points in the (m̃,−c̃) plane corresponding to the solutions. The resulting plot is

presented in figure 1.

As one can see there is a non zero fermionic condensate for zero bare quark mass, the

corresponding value of the condensate is c̃cr = 0.226. It is also evident that the analytical
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1 2 3 4 5
m
!

"0.1

"0.2

"0.3

"c
!

!m
!

"

-c
"

cr

.

Figure 1: The black line corresponds to (2.27), one can observe that the analytic result is valid

for large m̃. It is also evident that for m̃ = 0 〈ψ̄ψ〉 6= 0. The corresponding value of the condensate

is c̃cr = 0.226

200 600 1000
R
2
H

2000

4000

6000

ccr

Figure 2: A plot of the magnitude of the fermionic condensate at zero bare quark mass ccr as

function of R2H , the black curve represents equation (2.30).

expression for the condensate (2.27) that we got in the previous section is valid for large

m̃, as expected. Now using equation (2.23) we can deduce the dependence of ccr on H:

ccr = c̃crR
3H3/2 = 0.226R3H3/2 . (2.30)

It is interesting to check the consistency of our numerical analysis by solving equa-

tion (2.18) numerically and extracting the value of ccr for wide range of R2H, the resulting

plot fitted with equation (2.30) is presented in figure 2.

Another interesting feature of our phase diagram is the spiral behavior near the origin

of the (m̃,−c̃)-plane which can be seen in figure 3. A similar feature has been observed in

ref. [7], where the authors have argued that only the lowest branch of the spiral correspond-
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c�cr

Figure 3: A magnification of figure 1 to show the spiral behavior near the origin of the (−c̃, m̃)-

plane.

ing to positive values of m is the stable one (corresponding to the lowest energy state).

The spiral behavior near the origin signals instability of the embedding corresponding to

L0 ≡ 0. If we trace the curve of the diagram in figure 3 starting from large m, as we go

to smaller values of m we will reach zero bare quark mass for some large negative value of

the fermionic condensate ccr. Now if we continue tracing along the diagram one can verify

numerically that all other points correspond to embeddings of the D7-brane which inter-

sect the D3-brane at least once. (Note also that in ref. [4], such behavior was considered

inconsistent with the interpretation of the embedding as a re-normalization group flow.)

After further study one finds that the part of the diagram corresponding to negative values

of m̃ represents solutions for the D7-brane embedding which intersect the D3-branes odd

number of times, while the positive part of the spiral represents solutions which intersect

the D3-branes even number of times. The lowest positive branch corresponds to solutions

which don’t intersect the D3-branes and is the stable one, while the upper branches have

correspondingly 2, 4, etc., intersection points and are ruled out.

3. Meson spectrum

3.1 General properties

We study the scalar meson spectrum. To do so we will consider quadratic fluctuations [3]

of the embedding of the D7-brane in the transverse (L, φ)-plane. It can be shown that

because of the diagonal form of the metric the fluctuation modes along the φ coordinate

decouple from the one along L. However, because of the non-commutativity introduced

by the B-field we may expect the scalar fluctuations to couple to the vector fluctuations.

This has been observed in ref. [9], where the authors considered the geometric dual to non-

commutative super Yang Mills . In our case the mixing will be even stronger, because of the

non-trivial profile for the D7-brane embedding, resulting from the broken supersymmetry.
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Let’s proceed with obtaining the action for the fluctuations. To obtain the contribution

from the DBI part of the action we consider the expansion:

L = L0(ρ) + 2πα′χ, φ = 0 + 2πα′ , (3.1)

where L0(ρ) is the classical embedding of the D7-brane solution to equation (2.18). To

second order in α′ we have the following expression:

Eab = E0
ab + 2πα′E1

ab + (2πα′)2E2
ab , (3.2)

where E0, E1, E2 are given by:

E0
ab = Gab(ρ, L0(ρ), ψ) + Bab,

E1
ab =

R2L0
′

ρ2 + L2
0

(
∂aχδρ

b + ∂bχδρ
a

)
+ ∂L0Gabχ + Fab (3.3)

E2
ab =

R2

ρ2 + L2
0

(
∂aχ∂bχ + L2

0∂aΦ∂bΦ
)
− 2R2L0L

′
0

(ρ2 + L2
0)

2

(
∂aχδρ

b + ∂bχδρ
a

)
χ +

1

2
∂2

L0
Gabχ

2 .

Here Gab and Bab are the induced metric and B field on the D7-brane’s world volume. Now

we can substitute equation (3.3) into equation (2.11) and expand to second order in α′. It

is convenient [9] to introduce the following matrices:

||E0
ab||−1 = S + J, (3.4)

where S is diagonal and J is antisymmetric:

||Sab|| = diag

{
− G−1

11 , G−1
11 ,

G11

G2
11 + H2

,
G11

G2
11 + H2

, G−1
ρρ , G−1

ψψ , G−1
αα, G−1

ββ

}
, (3.5)

Jab =
H

G2
11 + H2

(δa
3δb

2 − δb
3δ

a
2 ) , (3.6)

G11 =
ρ2 + L0

2

R2
; Gρρ = R2 (1 + L′

0
2)

ρ2 + L2
0

; Gψψ =
R2ρ2

ρ2 + L2
0

;

Gαα = cos2 ψGψψ ; Gββ = sin2 ψGψψ . (3.7)

Now it is straightforward to get the effective action. At first order in α′ the action for

the scalar fluctuations is the first variation of the classical action (2.11) and is satisfied by

the classical equations of motion. The equation of motion for the gauge field at first order

was considered in section 2 for the computation of the C(6) potential induced by the B-

field. Therefore we focus on the second order contribution from the DBI action.

After integrating by parts and taking advantage of the Bianchi identities for the gauge

field, we end up with the following terms. For χ:

Lχ ∝ 1

2

√
−E0

R2

ρ2 + L0
2

Sab

1 + L′
0
2 ∂aχ∂bχ +

[
∂2

L0

√
−E0 − ∂ρ

(
∂L0

√
−E0

L′
0

1 + L′
0
2

)]
1

2
χ2 ,

(3.8)
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and for F :

LF ∝ 1

4

√
−E0Saa′

Sbb′FabFa′b′ , (3.9)

and the mixed χ–F terms:

LFχ ∝ sin 2ψ

2
fχF23 , (3.10)

and for Φ:

LΦ ∝ 1

2

√
−E0

R2L0
2

ρ2 + L2
0

Sab∂aΦ∂bΦ , (3.11)

where the function f in (3.10) is given by:

f(ρ) = ∂ρ

(
g(ρ)

L′
0

1 + L0
′2 J23

)
+ J32∂L0g(ρ) + 2g(ρ)J23S22∂L0G11 , (3.12)

with g(ρ) =

√
−E0

sin ψ cos ψ
= ρ3

√
1 + L0

′2

√
1 +

R4H2

(ρ2 + L2
0)

2
.

As can be seen from equation (3.10) the A2, A3 components of the gauge field couple

to the scalar field χ via the function f . Note that since for ρ → ∞ and L → ∞, we

see that J23 → 0, the mixing of the scalar and vector field decouples asymptoticly. In

order to proceed with the analysis we need to take into account the contribution from the

Wess-Zumino part of the action. The relevant terms to second order in α′ are [9]:

SWZ =
(2πα′)2

2
µ7

∫
F(2) ∧ F(2) ∧ C(4) + (2πα′)µ7

∫
F(2) ∧ B(2) ∧ P̃ [C(4)] , (3.13)

where C(4) is the background R-R potential given in equation (2.1) and C̃(4) is the pull

back of its magnetic dual. One can show that:

C̃4 =
R4

gs

2ρ2 + L2

(ρ2 + L2)2
L2 sin ψ cos ψdψ ∧ dα ∧ dβ ∧ dφ . (3.14)

Writing φ = 2πα′Φ we write for the pull back P [C̃(4)]:

P [C̃(4)] = −2πα′

gs

sin 2ψ

2
K(ρ)∂aΦdψ ∧ dα ∧ dβ ∧ dxa, (3.15)

where we have defined:

K(ρ) = −R4L2
0

2ρ2 + L0
2

(ρ2 + L2
0)

2
(3.16)

Now note that the B-field has components only along x2 and x3, therefore dxa in equa-

tion (3.15) can be only dρ, dx0 or dx1. This will determine the components of the gauge

field which can mix with Φ, However after integrating by parts and using the Bianchi

identities one can get the following simple expression for the mixing term:

−(2πα′)2
µ7

gs

∫
d8ξ

sin 2ψ

2
H∂ρKΦF01 , (3.17)
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resulting in the following contribution to the complete lagrangian:

LFΦ ∝ sin 2ψ

2
H∂ρKΦF01 . (3.18)

Note that this means that only the A0 and A1 components of the gauge field couple to the

scalar field Φ. Next the contribution from the first term in (3.13) is given by:

(2πα′)2
µ7

gs

∫
d8ξ

(ρ2 + L2
0)

2

8R4
FabFcdǫ

abcd , (3.19)

where the indices take values along the ρ, ψ, α, β directions of the world volume. This

will contribute to the equation of motion for Aρ, Aψ, Aα and Aβ , which do not couple to

the scalar fluctuations. In this paper we will be interested in analyzing the spectrum of

the scalar modes, therefore we will not be interested in the components of the gauge field

transverse to the D3-branes world volume. However although there are no sources for

these components from the scalar fluctuations, they still couple to the components along

the D3-branes as a result setting them to zero will impose constraints on the A0 . . . A3.

Indeed from the equation of motion for the gauge field along the transverse direction one

gets:
3∑

a=0

Saa∂b∂aAa = 0, b = ρ, ψ, α, β , (3.20)

(Here, no summation on repeated indices is intended.) However the non-zero B-field ex-

plicitly breaks the Lorentz symmetry along the D3-branes’ world volume. In particular we

have:

S00 = −S11 , S22 = S33 6= S11 , (3.21)

which suggests that we should impose:

−∂0A0 + ∂1A1 = 0 , ∂2A2 + ∂3A3 = 0 . (3.22)

We will see that these constraints are consistent with the equations of motion for A0 . . . A3.

Indeed with this constraint the equations of motion for χ, Φ and Aµ, µ = 0 . . . 3 are, for χ:

1 + L′
0
2

g
∂ρ

(
g∂ρχ

(1 + L′
0
2)2

)
+

∆Ω3χ

ρ2
+

R4

(ρ2 + L2
0)

2
¤̃χ+ (3.23)

+
1 + L′

0
2

g

(
−∂ρ

(
∂g

∂L0

L′
0

1 + L′
0
2

)
+

∂2g

∂L2
0

)
χ +

1 + L′
0
2

g
fF23 = 0 ,

and for Φ:

1

g
∂ρ

(
gL2

0∂ρΦ

1 + L′
0
2

)
+

L2
0∆Ω3Φ

ρ2
+

R4L2
0

(ρ2 + L2
0)

2
¤̃Φ − H∂ρK

g
F01 = 0 , (3.24)
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and finally for Aa:

1

g
∂ρ

(
g∂ρA0

1 + L′
0
2

)
+

∆Ω3A0

ρ2
+

R4

(ρ2 + L2
0)

2
¤̃A0 +

H∂ρK

g
∂1Φ = 0 ,

1

g
∂ρ

(
g∂ρA1

1 + L′
0
2

)
+

∆Ω3A1

ρ2
+

R4

(ρ2 + L2
0)

2
¤̃A1 +

H∂ρK

g
∂0Φ = 0 ,

1

g
∂ρ


 g∂ρA2

(1+L′
0
2)(1+ R4H2

(ρ2+L2
0)

2 )


+

R4

(ρ2+L2
0)

2+R4H2
¤̃A2+

∆Ω3A2

ρ2(1+ R4H2

(ρ2+L2
0)

2 )
− f

g
∂3χ = 0 ,

1

g
∂ρ


 g∂ρA3

(1+L′
0
2)(1+ R4H2

(ρ2+L2
0)

2 )


+

R4

(ρ2+L2
0)

2+R4H2
¤̃A3+

∆Ω3A3

ρ2(1+ R4H2

(ρ2+L2
0)

2 )
+

f

g
∂2χ = 0 .

(3.25)

We have defined:

¤̃ = −∂2
0 + ∂2

1 +
∂2

2 + ∂2
3

1 + R4H2

(ρ2+L2
0)2

. (3.26)

As one can see the spectrum splits into two independent components, namely the vector

modes A0, A1 couple to the scalar fluctuations along Φ, while the vector modes A2, A3

couple to the scalar modes along χ. However it is possible to further simplify the equations

of motion for the gauge field. Focusing on the equations of motion for A0 and A1 in

equnation (3.25), it is possible to rewrite them as:

1

g
∂ρ

(
g∂ρF01

1 + L′
0
2

)
+

∆Ω3F01

ρ2
+

R4

(ρ2 + L2
0)

2
¤̃F01 −

H∂ρK

g
(−∂2

0 + ∂2
1)Φ = 0

1

g
∂ρ

(
g∂ρ(−∂0A0 + ∂1A1)

1 + L′
0
2

)
+

∆Ω3(−∂0A0 + ∂1A1)

ρ2
+

R4

(ρ2 + L2
0)

2
¤̃(−∂0A0 + ∂1A1) = 0 .

(3.27)

Note that the first constraint in (3.22) trivially satisfies the second equation in (3.27). In

this way we are left with the first equation in (3.27). Similarly one can show that using

the second constraint in (3.22) the equations of motion in (3.25) for A2 and A3 boil down

to a single equation for F23:

1

g
∂ρ


 g∂ρF23

(1 + L′
0
2)(1 + R4H2

(ρ2+L2
0)2

)


 +

R4

(ρ2 + L2
0)

2 + R4H2
¤̃F23 (3.28)

+
∆Ω3F23

ρ2(1 + R4H2

(ρ2+L2
0)

2 )
+

f

g
(∂2

2 + ∂2
3)χ = 0 .

Now let us proceed with a study of the fluctuations along Φ.
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3.2 Fluctuations along Φ

To proceed, we have to take into account the F01 component of the gauge field strength and

solve the coupled equations of motion. Since the classical solution for the embedding of the

D-brane is known only numerically we have to rely again on numerics to study the meson

spectrum. However if we look at equation (2.18) we can see that the terms responsible for

the non-trivial parts of the equation of motion are of order H2. On the other hand, the

mixing of the scalar and vector modes due to the term (3.18) appear at first order in H.

Therefore it is possible to extract some non-trivial properties of the meson spectrum even

at linear order in H and as it turns out, we can observe a Zeeman-like effect: A splitting

of states that is proportional to the magnitude of the magnetic field. To describe this, let

us study the approximation of weak magnetic field.

3.2.1 Weak magnetic field

To first order in H the classical solution for the D7-brane profile is given by:

L0 = m + O(H2), (3.29)

where m is the asymptotic separation of the D3 and D7-branes and corresponds to the

bare quark mass. In this approximation the expressions for g(ρ) and ∂ρK(ρ), become:

g(ρ) = ρ3 , ∂ρK(ρ) =
4m2R4ρ3

(ρ2 + m2)3
,

and the equations of motion for Φ and F01, equations (3.24) and (3.27), simplify to:

1

ρ3

(
ρ3m2∂ρΦ

)
+

m2∆Ω3

ρ2
Φ +

m2R4

(ρ2 + m2)2
¤Φ − 4H

m2R4

(ρ2 + m2)3
F01 = 0 , (3.30)

and
1

ρ3
∂ρ

(
ρ3∂ρF01

)
+

∆Ω3F01

ρ2
+

R4

(ρ2 + m2)2
¤F01 − 4H

m2R4

(ρ2 + m2)3
P2Φ = 0 ,

where ¤ = −∂2
0 + ∂2

1 + ∂2
2 + ∂2

3 , P2 = −∂2
0 + ∂2

1 .

This system has become similar to the system studied in ref. [9] and in order to decouple

it we can define the fields:

φ± = F01 ± mPΦ , (3.31)

where P =
√

−∂2
0 + ∂2

1 . The resulting equations of motion are:

1

ρ3
∂ρ(ρ

3∂ρφ±) +
∆Ω3

ρ2
φ± +

R4

(ρ2 + m2)2
¤φ± ∓ H

4R4m

(ρ2 + m2)3
Pφ± = 0 . (3.32)

Note that P2 is the Casimir operator in the (x0, x1) plane only, while ¤ is the Casimir

operator along the D3-branes’ world volume. If we consider a plane wave eix.k then we can

define:

¤eix.k = M2eix.k, P2eix.k = M2
01e

ix.k , (3.33)

and we have the relation:

M2 = M2
01 − k2

2 − k2
3 . (3.34)
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The corresponding spectrum of M2 is continuous in k2, k3. However, if we restrict ourselves

to motion in the (x0, x1)-plane the spectrum is discrete. Indeed let us consider the ansatz:

φ± = η±(ρ)e−ix0k0+ik1x1 . (3.35)

Then we can write:

1

ρ3
∂ρ(ρ

3∂ρη±) +
R4

(ρ2 + m2)2
M2

±η± ∓ H
4R4m

(ρ2 + m2)3
M±η± = 0 , (3.36)

M± ≡ M01± .

Let us analyze equation (3.36). It is convenient to introduce:

y = − ρ2

m2
; M̄± =

R2

m
M±; P±(y) = (1 − y)α±η±; (3.37)

2α± = 1 +
√

1 + M̄2
±; ǫ = H

R2

m2
.

With this change of variables equation (3.36) is equivalent to:

y(1 − y)P ′′
± + 2(1 − (1 − α±)y)P ′ − α±(α±−1)P± ± ǫ

M̄±

(1 − y)2
P± = 0 . (3.38)

Next we can expand:

P± = P0 ± ǫP1 + O(ǫ2) ; α± = α0 ± ǫα1 + O(ǫ2) ; (3.39)

M̄± = M̄0 ± ǫα1
(4α0 + 2)

M̄0
+ O(ǫ2) ; M̄0 = 2

√
α0(α0 + 1) .

leading to the following equations for P0 and P1:

y(1 − y)P ′′
0 + 2(1 − (1 − α0)y)P ′

0 − α0(α0 − 1)P0 = 0 , (3.40)

y(1 − y)P ′′
1 +2(1−(1−α0)y)P ′

1−α0(α0−1)P1 =

(
α1(2α0−1)− M̄0

(1−y)2

)
P0−2α1yP ′

0 .

The first equation in (3.40) is the hypergeometric equation and corresponds to the fluctu-

ations in pure AdS5 × S5 . It has the regular solution [3]:

P0(y) = F (−α0, 1 − α0, 2, y) . (3.41)

Furthermore regularity of the solution for η(ρ) at infinity requires [3] that α0 be discrete,

and hence the spectrum of M̄0:

1 − α0 = −n, n = 0, 1, . . . (3.42)

M̄0 = 2
√

(n + 1)(n + 2) .

The second equation in (3.40) is an inhomogeneous hypergeometric equation. However for

the ground state, namely n = 0, P0 = F (−1, 0, 2, y) = 1 and one can easily get the solution:

P1(y) =
M̄0

6
ln(1 − y) + (6α1 − M̄0)

(
ln(−y) +

1

y

)
− M̄0

4(1 − y)
. (3.43)
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Figure 4: Plot of M̄ = MR2/m vs. H/m for the first three states. The dashed black lines

correspond to the spectrum given by equation (3.42)

On the other hand, using the definition of P±(y) in (3.37) to first order in ǫ we can write:

η± =
1

(1 − y)α0

(
1 ∓ ǫ

α1

α0
ln(1 − y)

)
(1 ± ǫP1(y)) , (3.44)

for the ground state α0 = 1 and we end up with the following expression for η±:

η± =
1

1 − y
± ǫ

M̄0

4(1 − y)2
± ǫ

1 − y
(6α1 − M̄0)

(
ln(−y) +

1

y
− ln(1 − y)

6

)
. (3.45)

Now if we require that our solution is regular at y = 0 and goes as 1/ρ2 ∝ 1/y at infinity,

the last term in (3.45) must vanish. Therefore we have:

α1 =
M̄0

6
. (3.46)

After substituting in (3.39) and (3.37) we end up with the following correction to the

ground sate:

M± = M0 ±
H

m
. (3.47)

We observe how the introduction of an external magnetic field breaks the degeneracy of

the spectrum given by equation (3.42) and results in Zeeman splitting of the energy states,

proportional to the magnitude of H. Although equation (3.47) was derived using the

ground state it is natural to expect that the same effect takes place for higher excited

states. To demonstrate this it is more convenient to employ numerical techniques for

solving equation (3.36) and use the methods described in ref. [4] to extract the spectrum.

The resulting plot is presented in figure 4. As expected we observe Zeeman splitting of

the higher excited states. It is interesting that equation (3.47) describes well not only the

ground state, but also the first several excited states.
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It turns ou that one can easily generalize equation (3.47) to the case of non-zero

momentum in the (x2, x3)-plane. Indeed if we start from equation (3.32) and proceed with

the ansatz:

φ± = η̃±(ρ)e−ix.k , (3.48)

we end up with:

1

ρ3
∂ρ(ρ

3∂ρη̃±) +
R4

(ρ2 + m2)2
M2

±η̃± ∓ H
4R4m

(ρ2 + m2)3
M01±η̃± = 0 , (3.49)

M01± =
√

M2
± + k2

23;

k23 ≡
√

k2
2 + k2

3 .

After going through the steps described in equations (3.37)–(3.45), equation (3.46) gets

modified to:

α1 =
M̄0

6

√
1 +

k2
23

M2
0

. (3.50)

Note that validity of the perturbative analysis suggests that α1 is of the order of α0 and

therefore we can trust the above expression as long as k23 is of the order of M0. Now it is

straightforward to obtain the correction to the spectrum:

M± = M0 ±
H

m

√
1 +

k2
23

M2
0

. (3.51)

We see that the addition of momentum along the (x2 − x3)-plane enhances the splitting of

the states. Furthermore the spectrum depends continuously on k23.

3.2.2 Strong magnetic field

For strong magnetic field we have to take into account terms of order H2, which means that

we no longer have an expression for L0(ρ) in a closed form and we have to rely on numer-

ical calculations only. Furthermore there is no obvious way to decouple equations (3.24)

and (3.27). The numerical analysis of this coupled system of differential equations in the

more general case of finite temperature was considered in [8]. The results show that for

strong magnetic field the Zeeman splitting described in the previous subsection persist and

for sufficiently strong magnetic field the energy levels intersect.

It is interesting to explore the effect of the chiral symmetry breaking on the meson

spectrum. It turns out that if we restrict ourselves to fluctuations along the (x2, x3) plane,

there is no source term in equation (3.25), and we can consistently set F01 equal to zero.

The resulting spectrum corresponds to the mass in two Euclidean dimensions. Indeed let

us consider the ansatz:

Φ = h(ρ)e−ik2x2−ik3x3
Yl(S

3) , (3.52)

where Yl(S
3) are the spherical harmonics on the S3 sphere satisfying: ∆Ω3Yl = −l(l+2)Yl.

With this set-up the equation of motion for Φ, equation (3.24), reduces to equation for
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Figure 5: Spectrum of m̃23 vs. m̃. The dashed line represents the lowest level of the meson

spectrum for pure AdS5 × S5 space

h(ρ):

1

g
∂ρ

(
gL2

0∂ρh(ρ)

1 + L′
0
2

)
− L2

0l(l + 2)

ρ2
h(ρ) +

R4L2
0m

2
23

(ρ2 + L2
0)

2 + R4H2
h(ρ) = 0 , (3.53)

where we have defined:

m2
23 = −k2

2 − k2
3 . (3.54)

Before we proceed with the numerical analysis of equation (3.53) let us introduce dimen-

sionless variables by performing the transformation (2.20) and defining:

m̃23 =
R√
H

m23 . (3.55)

The resulting equation is:

ρ̃2 + L̃2

ρ̃3

√
1+L̃′

2
(1+(ρ̃2+L̃2)2)1/2

∂ρ̃

(
ρ̃3

(
1+

1

(ρ̃2+L̃2)2

)1/2 L̃2

√
1+L′2

∂ρ̃h(ρ̃)

)
+ (3.56)

− L̃2

ρ̃2
l(l + 2)h(ρ̃) +

L̃2m̃2
23

(ρ̃2 + L̃2)2 + 1
h(ρ̃) = 0 .

In order to study the spectrum we look for normalizable solutions which have asymptotic

behavior h(ρ̃) ∝ 1/ρ̃2 for large ρ̃ and satisfy the following boundary conditions at ρ̃ = 0:

h′(0) = 0; h(0) = 1 . (3.57)

Let us consider first the lowest level of the spectrum. The spectrum that we get as a

function of the bare quark mass is plotted in figure 5.

For large m̃ the spectrum asymptotes (the dashed line in figure 5) to the one for pure

AdS5 × S5 space obtained by ref. [3]

M0 =
2m

R2

√
(n + l + 1)(n + l + 2) , (3.58)
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Figure 7: Spectrum of m̃23 vs m̃ for n = 0 . . . 4. The dashed lines represent the spectrum for

AdS5 × S5 space.

with the substitution n = 0, l = 0, to obtain our case. Therefore we are describing the

lowest possible state of the meson spectrum. In figure 6 we have zoomed in the area near

the origin of the (m̃, m̃23)-plane, one can see that for small values of m̃ = 2πα′mq/R
√

H

we observe ∝ √
mq dependence of the ground state on the bare quark mass mq, which is to

be expected since the chiral symmetry associated with the spinor representation of SO(2)

is spontaneously broken [41].

It is interesting to look for modes corresponding to higher excited states (non-zero n).

In figure 7 we have presented a plot of some of these. Again, the dashed line correspond

to the pure AdS5 × S5 spectrum given by (3.58) for l = 0. For small values of m̃ one

can observe the qualitative difference of the behavior of the spectrum corresponding to the

n = 0 state from that of the higher excited states. Indeed as m̃ → 0 the n = 0 states

follow the
√

m̃ behavior plotted in figure 6, while the excited states tend to some finite
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values at zero bare quark mass. The n = 0 states merge into the Goldstone boson of the

spontaneously broken chiral symmetry.
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